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SUMMARY. There is a simple robust variance estimator for cluster-correlated data. While this estimator 
is well known, it is poorly documented, and its wide range of applicability is often not understood. The 
estimator is widely used in sample survey research, but the results in the sample survey literature are not 
easily applied because of complications due to unequal probability sampling. This brief note presents a 
general proof that the estimator is unbiased for cluster-correlated data regardless of the setting. The result 
is not new, but a simple and general reference is not readily available. The use of the method will benefit 
from a general explanation of its wide applicability. 
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There are many situations where data are observed in clusters 
such that observations within a cluster are correlated while 
observations between clusters are uncorrelated, so-called 
cluster-correlated data. For example, the typical teratology 
screening experiment involves administration of a compound 
to pregnant dams of a rodent species, followed by evaluation 
of the fetuses in a litter for various types of malformations. In 
this situation, the fetuses within a particular litter are corre- 
lated while any two fetuses from different litters are indepen- 
dent. Similarly, dental studies often collect data on each tooth 
surface for each of several teeth from a set of patients. Again, 
observations from the same patient are correlated while any 
two observations from different patients are independent. An- 
other example is repeated measurements or recurrent events 
observed on the same person. As before, observations at dif- 
ferent time points from the same person are correlated while 
any two observations from different patients are independent. 
As a final illustration, sample surveys often use multistage 
sample designs. For example, a sample of hospital patients 
might start out with a sample of geographic areas (such as 
counties), followed by a sample of hospitals within the se- 
lected geographics areas, ending with a sample of hospital 
discharges abstracted from the selected hospitals. Here we 
have a three-stage design consisting of geographic areas, hos- 
pitals, and hospital discharges. If the geographic areas were 
selected with replacement, then selected discharges from two 
geographic areas would be uncorrelated while two discharges 
from the same geographic area would be correlated. 

A major statistical problem with cluster-correlated data 
arises from intracluster correlation, or the potential for clus- 
termates to respond similarly. This phenomenon is often re- 
ferred to as overdispersion or extra variation in an estimated 

statistic beyond what would be expected under independence. 
Analyses that assume independence of the observations will 
generally underestimate the true variance and lead to test 
statistics with inflated Type I errors. 

The following presents an unbiased variance estimator for 
a linear statistic from cluster-correlated data. The approach 
uses the well-known, but not well-documented, robust 
between-cluster variance estimator for cluster-correlated data. 
This approach is used extensively in sample survey research 
where clustered data are commonly encountered. See, e.g., 
Hansen, Hurwitz, and Madow (1953, Section 6.7)  or Sarndal, 
Swensson, and Wretman (1992, Section 4.5). These two ref- 
erences from the sample survey literature justify the variance 
estimator under the assumptions that the primary clusters 
are sampled with replacement, while any sampling plan that 
allows unbiased estimation of the primary cluster totals can 
be used within a cluster. In the sample survey situation, with- 
replacement sampling of the primary clusters implies that ob- 
servations between primary clusters are uncorrelated. In the 
general situation, the critical assumption is that the observa- 
tions between clusters are uncorrelated. 

The following notation describes the general cluster-cor- 
related data situation. Let z j k  be the lcth observation (lc = 
1,2, .  . . ,n j )  from the j t h  cluster ( j  = 1 , 2 , .  . . ,m) .  Assume, 
without loss of generality, that E[zjk] = 0. Further assume 
that cov(zjk, z j k r )  = U j k k l  and that cov(zjk, z j , p )  = 0 when 
j # j ’ .  These assumptions are very general and allow the vari- 
ance to be heteroscedastic, both between and within clusters, 
and allow for an arbitrary dependence structure among obser- 
vations within a cluster. For example, there could be three or 
more levels of nesting, as in the dental example above (tooth 
surfaces nested within teeth nested within patients) or an au- 
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toregressive process for repeated measurements over time on 
the same person. 

z J k  and 
note that 

First, consider the simple linear statistic z = C, 

var[z] = c v a r  [ x z J k ]  = ~ ~ ~ q l k k ’ .  

Letting z3 = c k  z J k  and Z = c, z3/m, the between-cluster 
variance estimator is then given by 

3 k 3 k k’ 

r 1 

We want to show that E[S2] = ~j ck c k ’  u j k k ’  = var[z]. First, 
note that 

k k‘ k k‘ 

Also, 

J J  J 

because observations from different clusters are uncorrelated. 
Thus, 

r 1 

= c c c q l l ; k t  =var[z]. 
j k k’ 

Hence, we have the desired result that the between-cluster 
variance estimator, S2,  is an unbiased estimator of the vari- 
ance of a linear statistic. Notice that we only need to know to 
which cluster each observation belongs without regard to the 
dependence structure of observations within a cluster. 

The above is not a new result, but it is poorly documented. 
It has been available in the sample survey literature since at 
least 1953 (Hansen et al., 1953, Section 6.7). However, we are 
not aware of a general proof that the between-cluster variance 
estimator is unbiased for cluster-correlated data. The proofs 
in the sample survey literature are not easily applied because 
of the complications due to  unequal probability sampling. The 
wide applicability of the results is often not well recognized 
because of the lack of a clear reference. 

On a final note, the between-cluster variance estimator can 
be combined with a Taylor series linearization approach 
(Woodruff, 1971; Binder, 1983) to yield, as the number of 
clusters grows large, consistent variance estimates of nonlin- 
ear statistics. This approach replaces the original data with a 
linear approximation which can then be used as shown above. 
For example, Taylor series linearization with the between- 
cluster variance estimator was used by Rao and Colin (1991) 
for the proportion of malformed fetuses for teratology studies, 
by Fuller (1975) for linear regression coefficients in complex 

sample surveys, by Bieler and Williams (1995) for logistic 
regression in teratology studies, and by Williams (1995) for 
Kaplan-Meier survival functions. The Taylor series lineariza- 
tion approach with the between-cluster variance estimator is 
closely related to the generalized estimating equation (GEE) 
approach of Liang and Zeger (1986) and, in some situations, 
the two approaches are the same when assuming working in- 
dependence. The Taylor series linearization approach is much 
older, with its roots in sample survey research reaching back 
to the early 1950s. The G E E  approach attempts to improve 
estimation by including assumptions about the within-cluster 
correlation structure in the estimating equations. 

RBSUME 
I1 existe un estimateur simple et robuste de la variance pour 
des donnCes corrklkes par groupe. Alors que cet estimateur 
est bien connu, la documentation le concernant est limitCe et 
son large champs d’application est souvent ma1 compris. I1 est 
largement utilisC dans la recherche d’enquete par Cchantillon. 
mais dans la 1ittCrature sur les enqudtes par Cchantillon les 
rksultats ne sont pas facilement appliques B cause des com- 
plications dues aux inkgales probabilitks d’6chantillonnage. 
Cette courte note pr6sente la preuve gkn6rale que l’estimateur 
est non biaisC pour des donnCes corrClCes par groupe quelle 
que soit la composition. Bien que le resultat ne soit pas nou- 
veau, aucune rCfCrence simple et gknkrale n’est facilement 
disponible. L’utilisation de la mkthode pourra bknbficier d’une 
explication gCnCrale de son large domaine d’application. 
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